The GCD-Reciprocal LCM Matrices on GCD-Closed Sets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divisibilty Properties of Gcd Ve Lcm Matrices

Let a, b and n be positive integers and let S = {x1, x2, . . . , xn} be a set of distinct positive integers. The n × n matrix (Sf ) = (f ((xi, xj))), having f evaluated at the greatest common divisor (xi, xj) of xi and xj as its ij−entry, is called the GCD matrix associated with f on the set S. Similarly, the n × n matrix [Sf ] = (f ([xi, xj ])) is called the LCM matrix associated with f on S. ...

متن کامل

Notes on the divisibility of GCD and LCM Matrices

Let S = {x1,x2, . . . ,xn} be a set of positive integers, and let f be an arithmetical function. The matrices (S) f = [ f (gcd(xi,xj))] and [S] f = [ f (lcm[xi,xj])] are referred to as the greatest common divisor (GCD) and the least common multiple (LCM) matrices on S with respect to f , respectively. In this paper, we assume that the elements of the matrices (S) f and [S] f are integers and st...

متن کامل

Ela an Analysis of Gcd and Lcm Matrices via the Ldl -factorization∗

Let S = {x1, x2, . . . , xn} be a set of distinct positive integers such that gcd(xi, xj) ∈ S for 1 ≤ i, j ≤ n. Such a set is called GCD-closed. In 1875/1876, H.J.S. Smith showed that, if the set S is “factor-closed”, then the determinant of the matrix eij = gcd(xi, xj) is det(E) = ∏n m=1 φ(xm), where φ denotes Euler’s Phi-function. Since the early 1990’s there has been a rebirth of interest in...

متن کامل

An analysis of GCD and LCM matrices via the LDL^T-factorization

Let S = {x1, x2, . . . , xn} be a set of distinct positive integers such that gcd(xi, xj) ∈ S for 1 ≤ i, j ≤ n. Such a set is called GCD-closed. In 1875/1876, H.J.S. Smith showed that, if the set S is “factor-closed”, then the determinant of the matrix eij = gcd(xi, xj) is det(E) = ∏n m=1 φ(xm), where φ denotes Euler’s Phi-function. Since the early 1990’s there has been a rebirth of interest in...

متن کامل

Circulant graphs and GCD and LCM of Subsets

Given two sets A and B of integers, we consider the problem of finding a set S ⊆ A of the smallest possible cardinality such the greatest common divisor of the elements of S ∪ B equals that of those of A ∪ B. The particular cases of B = ∅ and #B = 1 are of special interest and have some links with graph theory. We also consider the corresponding question for the least common multiple of the ele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical and Computational Applications

سال: 2004

ISSN: 2297-8747

DOI: 10.3390/mca9010101